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ABSTRACT

The elastic-plastic behavior of a ring under steady state radial
temperature gradient is analyzed. The mate:ial is assumed to be
elastic-perfectly plastic and its yield stress in simple shear to be a
continuous and general monotonically decreasing positive function of
temperature, Modified Tresca's yield condition and the associated flow

rules are used.
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NOTATIONS

inner boundary of an elastic region in the ring
outer toundary of an elastic region in the ring
inner boundary of the ring

outer boundary of the ring

Young's modulus

half the thickness of the ring

yield stress in simple shear

k as a function of temperature

value of k at the place denoted by the subscript
k at O°F

pressures at the elastic boundaries a and b respectively
cylindrical coordinates

place in an elastic region where §;£ =0

place in an elastic region where Og = 0
temperature in °F

T at the place denoted by the subscript

radial and axial displacements respectively
coefficient of thermal expansion

absolute value of slope of a linear function k(T)

et
%

AT for incipience of yielding
AT for complete yielding of the ring

radial, tangential and axial strains respectively
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elastic parts of the radial, tangential and axial
strains respectively

plastic parts of the radial, tangential and axial
strains respectively

elastic-plastic interfaces (n > p)

Poisson's ratio

radial, tangential and axial stresses respectively
o_at r = p or n respectively

r

o, at r = p or n respectively



An Elasto-plastic Analysis of Circular Rings With

Temperature Dependent Yield Stress

by
N. T. Patel and L. W. Hu

l. Introduction.

During the last two decades a number of thermoelastic-plastic
studies on symmetric problems have been made. For instance, the
solutions have been obtained for the steady stute temperature problems
of thick-valled spheres by Cowper[llu, Johnson and Mellor[zl and
Rogozinsk1[3], thick-walled cylinders by Blnnd[h] and Kammash, Murch
and Nughdi[S] and thin rings by Wilhoit[6]. Problems have been
studied for transient temperatures in p ‘tes by Yukse1[7], Landau,
Weiner and Zwicky[al, and Mendelson and Spero[gl, solid disks by

(10] (11])

Parkus s Cylinders by Landau and Zwicky

and Juunzemie[lal. In most of these investigations, the mechanical and

, and half spaces by Lee

thermal parameters--modulus of elasticity E, Poisson's ratio v, yield
stress in simple shear k, coefficient of expansion a, thermal conductivity
and specific heat--have been assumed to be independent of temperature and

3, 8,9 ,11,12)

stresses. Only in a few papers has the thermal dependence

of the yield stress in shear k(T) been taken into account. In reference
(3) thermal dependence of thermal conductivity has been also included.
However, non-isothermal yield conditions more general than those in-

cluding thermal dependence through k(T) have not been used. A theory

»
Mumbers in square brackets refer to the list of references at the end
of the paper.



on the flow rules associated with general nonisothermal yield condition
has been suggested by Prager[l3] in 1958. To this theory Boley and

[14] have given a plausible explanation and actempts have been

Weiner
made to apply the theory in particular using k(T) in Tresca's or von
Mises' yield condition.

The purpose of the present study is to investigate in detail the
influence of thermal dependence of yield stress on elastic-plastic
stresses and deformation of a thin, finite, annular ring subjected to a
steady state radial temperature gradient with traction free boundaries.
For the case of isothermal Tresca's yield condition, a stress solution
to this problem has been given by Wilhoit[él. In this paper, the
Tresca's yield condition, but modified in that the yield stress in simple

shear k is a continuous, general, monotonically decreasing positive

3 g% < 0, is used. Flow rules
[13,1k]

function of T, i.e. k = k(T) > 0
associated with this yield condition are used to investigate the
deformation. For illustration, a solution for lizear k(T) is presented.
The material is assumed to be elastic-nonstrainhardening and other
physical parameters are assumed to be inderendent of temperature and
stresses.

In the present problem the loading is thermal and is considered
only due to a difference in the temperatures at the two boundaries of
the ring. The ring is considered to be initially stress and strain-
free and at a uniform temperature. A complete monotonically increas-
ing loading program is assumed and unloading is not to be considered

here. Two cases depending upon whether the inner temperature is higher

or lower than the outer temperature become different and require



individual treatment. In each case the loading may be considered to
proceed in two vays. In one instance, the loading is assumed to
proceed such that the temperature at a boundary is changed extremely
slowly and in infinitesimal increments while the temperature at the
other boundary is held constant. The temperature distribution may be
assumed to be in steady state all the time, On the other hand, if it
is felt that this kind of loading history is really not continuous
because the transient stutes between the steudy states are neglected,
one may instead imagine the present problem applicable to problems in
which there are heat sources everywhere on each face keeping at any
time and leading during loading the ring through steady state tempera-
ture conditions.

Three points may be noted: (1) The temperature at a boundary
may be changed by either heating or cooling. (2) During a loading
program, the instantaneous temperatures at either boundaries may
alternately be held constant while the other is subjected to variation.
For instance, first the temperature at the inside boundary may be
raised for some time while the temperature at the outside boundary is
held constant and then the temperature at the outside boundary may be
lowered holding the temperature at the inside boundary constaat.

(3) However, the case of varying the temperatures at both boundaries
s!imultanecusly is not included in this analysis.

The fact that stresses in the plastic regions are statically
determinate except in one special case simplifies the determination of
the stresses in the elastic regions. The displacement solution is ob-

tained and provides a Justification to the a priori assumption of



infinitesimal strains at high temperatures or at high difference in the

boundary temperatures.

2. Fundamental Equations.

Consider a circular ring of inside radius c and outside radius d
with thickness 2h, as shown in Figure 1. Let the coordinate system be
cylindrical (r,0,z) with the origin on the central axis of the ring and
at the midpoint of ite thickness. The following sixteen equations are

valid in an elastic region.

The radial stress Cr and the tangential stress 0y are related by

the equilibrium equation:

dor
r3 o %% - % (1)
The strain-displacement equations are:
o @
" 7 (3)
and ¢, = 3% (4)

where €. € and €, are the radisl, tangentiai and axial strains
respectively, and u(r) and w(r,z) are the radial and axial displace-
ments respectively.

Let the temperatures at the inner boundary r = c and the outer
boundary r = d be Tc and Td respectively. It is well known that, in

the case of radial steady state temperature gradient, the temperature

distribution must satisfy the Luplace's equation
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82,280 (5)
dr

The solution of this ejyuation is

AT r
T-Tc-mglnc (6)
(]
AT d
or T-Td-fz T3 (1)
n—
c
where AT=T -T. ., (8)
¢ d

AT may be positive or negative,

Assuming that the present problem is a plane stress one, axial

stress
o, =0 (9)
Or Vde
and e;l—E-E—# aT (10)
g vg
eé-—g-—E-‘l«»aT (11)
vo vo
and e'z=-—E—r---§9-+aT (12)

where E and a are the modulus of elasticity and coefficient of thermal

expansion respectively. Single and double primes will be used to

denote the elastic and 1 'astic parts of the strain respectively.
Consider an arbitrary elastic region a < r < b vwhere a > ¢ and

b < d with temperatures T‘ and T, at the boundaries r=aand r = d

b
respectively. Elimination of u from Eqs. 2 and 3 gives a relation



between ex'. and ‘é . This relation, after substituting Eqs. 10, 11, 1

and 6 into it, reduces to a simple second order differential equation of

o forac<r<b

d%g do e
21' +% r ! %EGATZ =0 (13)
dr dr r ln-b—
a2
vhere a® = -7 « AL 2 (14)
a b n 4 a
c

Corresponding to AT, at® may be positive or negative. If the pressures
on the elastic boundaries are Py at r = a and Py at r = b, the solution

of Eq. 13 and Eq. 1 give:

2 2 2 2|
-
o =D, r2 - p u.z r #EA;T rz . rz (15)
.b_._l L_l b_._l mb_.
a2 a2 a2 '2_j
2 2 2 [ 2 i
41 R, . vl w2
g, " pd & _pbaz r2 EAel” |22 r
6 “a .2 2 2 2 2
L., L=} L R
a2 a2 al a2 B
(16)

Equations 1 to 12 are valid in a plastic region if the shape of
the ring does not change significantly during plastic deformation. By
Tresca's yield conlition, in a plastic region t = -;-mtx. (loLls Ioel,
|cxe - orI] = k, where t is the maximum shear stress and k is the yield



stress in shear. As mentioned in the introduction, k is assumed to be
a continuous, general, monotonically decreasing, positive end finite

valued function of temperature.

0<k =k(T) < and %<o (17)

Whereas k(T) must be continuous everywhere .%12) may be continuocus

plecevise.
In view of Eqs. 6 and 7, vhen AT and either Tc or Td are constants, k

can be assumed directly such that

0<k=ki(r)<se, %>o i AT > 0 and %<o it AT <0 (18)

When r and AT are both to be considered independent variables, the yield

stress k can be expressed as

k = k(r,AT), either T, or Td is held constant, (19)
and
3k > 0 when T held constant
AT — c
or Ak 0 when T. held constant (20)
AT - d
%%5 vanishes at r = ¢ when Tc is held constant and at r = 4 vhen Td is

held constant. Which of the functions for k given by Eqs. 17,18 and 19
are to be used will be clear in the analysis depending upon the considera-

tions being made.



For an illustration k(T) is taken to be
k= ko - BT (21)

vhere ko is yield stress in shear at O°F and B8 is an appropriate

positive constant., By Eq. 6 or 7, this equation reduces to

X =X ...Q.A_T_,_n!'. (22)
[ d c
n =
¢
B8AT 4
or k kd 3 n T (23)
ln;

vhere kc and k. are the yield stresses in shear at the boundaries

d

r=c and r = d respectively.

3. Behavior of Stresses irn an Elastic Region (AT LO).

Consider an arbitrary elastic region a < r <bd (a 2 ¢, b < d) of
the ring. The expressions for stress components in Eqs. 15 and 16 are

continuous and differentiable.

o B2 b2 =
do 2 2
-y —E—(p, - ) ¢ |- E—+ 1| Easr®
E; = 1 2;'- 1l 1n -?;
_l.__ a a ' (2’4)
s B b2 T
do _2 7
dr—e = % . £ (-p, + 1)+ 2" + =L | Easr®
2 _ ) Ll mi
al a? a

(25)



— —
= b2 b2
d(o, - 0.) _2 '_2'
0 2 r r e
oo r = (-p_ + pb) + = EaAT (26)
2= . .
a2 a2 ol
do

2
2 In b—z Py * By ¥
R el . (27)
2 _ EaAT
a?
“Py * Py 1
r_cannot exist, if ————— < - = ; and if it does exist it is unique.
m e — 2
EalT
Now, if the inequalities
grt— 2 —
2 tn -}’—2 b *h ¥
e <b s 2.2 | <» (28)
b2 EaAT
= 1
a‘
— —

are satisfied by the conditions imposed on the boundaries of the region
&a <r <b, then the folloving three important conclusions can be drawn
as to the nature of the stresses in the elastic region: (1) o, assumes
the maximum value (if AT® < 0) or the minimum value (if aT° > 0) at

only one place r_ in the region, (2) 0. = 0y 8t r and (3) oo and

)

(o, - °r) increase (if AT° > 0) or decrease (if AT® > 0) monotonically

6
in the region. The first two conclusions result because the Inequali-

ties 28 require r by Eq. 27 to be a < ro < b, and at r_, vhere
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do d%o
b i 0, 2r <0 depending upon aT® 2 0 respectively by Eq. 13 and
dr
g = 9, by Eq. 1. The third conclusion is due to the Eqs. 25 and 26
“p, *+ D
and the Inequality —.'-—e—b + 22 0 implied by the first of the
EaaT

Inequalities 28. Figure 2 (a=c, b=d), Figure 5 (p=a, dsb) and Figure 6

(p=a, n=b) illustrate the above behavior of elastic stresses. The
Inequalities 28, when rearranged, reduce to
[ = [ =
2 2
% Lo -
a -1E°2T<-p+p<" -lEaAT,irATe>O
b2 b2 a b b2 2
- n — in —
a2 a? a?
. — _ —
(29)
or,
2 ] 2 ]
¥as ] g
a8 _lEaAT>_p +p>a. -lEGAT,ifATe<O
b2 2 2 a b b2 2
—2- n -—2' n —;
A2 - (30)

In the following, three different sets of the boundary conditions
are shown satisfying the Inequalities 29 (hence, Inequalities 28) when

aT® > 0 (i.e. by Eq. 14, AT > 0):

(1) =P, = -P, = 0. The Inequalities 29 to be satisfied reduce to
2 2
2 Ty B e
2 -1 2L (o |8 | BeaT (31)
b2 b2 b2 <
— A — R'n—
a? a? a¢
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2 2
R _, .,
a 2 al
It can be verified that -1 < . -1 <0 and 0 < =1l < @ for
2 2
e in E— in E—
a2 al al

b
l«< 3 = Figure 2 wvhere ¢ = a and d = b illustrates this case.

(2) -P, * Py <0 and (oe - or) <Oatr=a,-p +p <0 and the
second of Inequalities 31 prove the second of Inequalities 29, Using
the second condition that (oe - or) <0 at r=avwith Egs. 15 and 16,
the first of Inequalities 29 can be proved easily. Figure 5 where
p=eandd=D5b illustrates this case.

(3) oy - o, <Oatr=aandoy -0 >0atr-b. Both these
conditions with Eqs. 15 and 16 satisfy easily the Inequalities 29.
Figure 6 where p = a and n = b illustrates this case.

For AT < 0 (i.e. AT < 0,by Eq. 14) each of the following four
different sets of boundary conditions satisfy Inequalities 30 (hence
Inequalities 28) just as above:

1) P, = -Py = 0 Figure 2.

(2) -p, + P, >0ando, -0 >0atrm=a.

, - - =
{3) 0g = 0, > Oat r=aandoy, -0 <0atr=ho

(W) -p, * P, <Oandoy -0 <Oatre=ho.

Thus, if a set of boundary conditions for an elastic region is one of
the sets mentioned in this section, the elastic stresses would behave
according to the conclusions made above and the incipience of yielding,

new yielding, further yielding or progress of yielding would be easy

to predict from that behavior as the loading progresses.
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4, Initial Yielding (AT < 0).

In an entirely elastic ring ¢ <r < d (1 < §'< ») with temperature

gradient (AT = AT® 2 0), the stresses 0. and o, have distributions of
the kind shown in Figure 2 as discussed in the previous section where
a=candb=4d. The distribution ot the maximum shear stress t =~%
maximum [IorI, Ioel, Ioe - °r|] then follows to be a continuous

function in three different pieces as shown in Figure 3 for AT > 0 and

1
Figure b for 4T < 0. r=5 o | inacr<r (atr=r, 0y = 0
ddr 1
and ;=== 0), = E-lorl inr <rc<r (atr=r_, o =0), and

T = % |oe - or| in r,sr < d. r decreases monotonically inc <r < r

r

c

and increases monotonically in r, <r<d, Atr=gc, = % Ioel; and

alsocatr=4d, = %-Ior - oel = % |°el‘ It can be shown from Eq. 16
that |°9| at r = ¢, |°6c| is always (1 < %-< ®) greater than |oed|,
Ioel at r = d. k is monotonic but increases if AT > O and decreases
if AT < O,

Frem Figure 3, it is clear that the incipience of yielding can
occur only inside at r = ¢ for a c rtain AT(>0) as AT is being increas-
ed from zero while keeping one of the boundary temperatures constant.
For AT > O, ATi the value of AT for the initial yielding is given by
the following equation obtained from the condition that % |°6c| =

kc(E k at r = c).

Ea ATi - 1 A 1 + 1 (32)
2k, a2 a2
—_—-1 in -—2
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ATi is explicitly determinable in Eq. 3l if Tc and hence kc are held

constant. ATi becomes implicitly determinable in Eq. 31 if Td is held

constant; because kc is then a function of Td and AT. For simple,

linear k(T) (Eq. 21) however

-1

i
Bo7t |, L& |2 __1 ., (328)
kd 28 42 42
— -] in —
c? c?

In the above discussion Tc or T, need not necessarily be assumed held

d
constant all the time from the beginning; it is which of Tc or T, that

d

is held constant during a step that initiates the yielding is important.

From Figure 4, it is clear that the incipience of yielding can
occur anywhere at one place or many places oa account or the natures of
k and t. Hence for AT < 0, the incipience of yielding is highly
dependent upon the relation k(r) which in turn is dependent upon k(T)
and the loading history. No general equation such as Eq. 32 for ATi
can be written. Thus general step by step analysis is prevented fr:m
here for AT < 0.

Complete step by step elastic-plastic analysis is carried out only
for the case of AT > 0 in the following sections. A section at the end

discusses the analysis in general for the case of AT < O,

5. Inner Plastic Region ¢ £ r < p (AT > Q).

Incipience of yielding occurs at r = ¢ when Og = -2k. As the

loading continues a finite plastic region will develop inside. Subject

to condition o4 < o < 0 the yield condition



1k

0g = -2k (33)

Eq. 1, and the boundary condition: o, ® O at r = ¢, determine

r
2
or--;Jkdr (34)

¢
Since k > O (Inequalities i7), 0, < O and 0 < 0. Since k increases

r
monotonically, the area under curve k from c to r, I k dr is less than

c
the area of the rectangle enclosing the curve, kr(r - ¢), where kr is

the value of k at an arbitrary point r.  Therefore kr > k (r - c) >
r L
I k dr and kr - j k dr. It follows that
¢ ¢
9g < 0,50 (35)

Thus at any stage of loading the yield condition Eq. 33 will always be
valid. It may be checked that any other form of the yield condition
will not give an acceptable stress solution.

Tne condition of continuity of 0, across the interface p and the
condition: o, = O at r = d, allow to find the stresses in the elastic

region p < r < d easily from the general Eqs. 15 and 16 used with Egs.

14 and 3L.

- \

2 2 2

p g;-- 1 Q; -1 in g;
orz_ngdrr +EaATd£ngr _ r (36)

o Y 2me P g2 2

c —_— -1 c —_—-1 in —

02 0?2 on
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2 (12 2
_— \d—2+1 -d—z+1 9.nd—2--r—z1
o = l%j K er ’2 . Ragd - zn% ’2 + —= 2 (37)
c L., g &, m &
c? 02 92
X y

Equations 36 and 37 will give complete stress distribution upon the

determination of p. The use of continuity of o, across p gives the

]
following relation to determine op.
2 2
p a, a?
2 2 2
£(4aT,0) = 2k +[-2-Jkdr]" + SRR gy Ao || 4 1| = 0.
I U a2 2 1 & 02] a2
c -1 c sl
p? p?
(38)
This equation and Eq. 32 show that p = ¢ when AT = ATi. As AT increases
from ATi, ir %%f is continuous -- piecewise if necessary, and
do_

then p increases with AT. Inequality 39 can be seen always satisfied
in the following equation due to Inequality 20 if AT is increasing and
Td is constant. If Tc is held constant, Inequality 39 is satisfied
definitely only when p = ¢ but may or may not be satisfied when p > c.
Therefore, since Eq. 39 is satisfied in any case when p = ¢, after an

incipience of yielding a small plastic region will definitely develop

inside for a small increment in AT.
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dAT
2 2 |
o 150 g =
-232—Tk+ljkdrp + —28 TR = LY
(o} P d2 2 4n = p2 d2
c L | - d
2 Z 2
ok o (—1;+l L p lnd— [d—z-
—n—-9-+k-ijkdr° ol —2— xar + BOAL_ [} _ 2" |]e
P 9 P p d2 d2 ang d2 dz
c —_—-1l |- c —_— -1l 1
p? lo2 p 0?2

The denominator and the second term of the numerator are poritive. The

first term of the numerator will be positive if T. is constant; but if

d
Tc is constant, it will be zero if p = ¢ and negative if p > ¢, by
Inequality 20. If p decreases at certain AT before new yielding
o.curs, it means that the plastic region is undergoing unloading and
becoming elastic. At such point the above analysis of stresses must
be modified and the analysis cannot be continued along the following
lines.

For the elastic region p < r < d, the stresses at the boundaries
p and d (Inequalities 35) satisfy the second set of conditions (for
AT > 0) discussed in the section on the beiavior of stresses in an
elastic region. Ops Ogs and hence t, should therefore be distributec.
as shown in Figure 5. It is evident that the yield condition is not

violated in the elastic region and further yielding continues from o

until a second plastic region starts to develop outside if the
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1
difference between k, and r, (trat r=qd (= -é-lo6 - °r| at r=qd) =
1 ; :
5 aed) decreases to zero, i.e. d(kd - rd) <Oordr, >dk, >0 as

kd -4 is approaching zero. For dAT > O and dp > 0, dk, > O because

d

kd remains constant if Td = constant and increases if Tc = constant;

but d¢, (= %-daed), when examined from Eq. 37, cannct be definitely

d

shown to be positive, negative or zero. Therefore, as the loading

progresses it is possible that tq = kd may not be satisfied at all and

the second yielding may never occur. g " kd by Eq. 37 is
2)
0 n Q;
2kd-[§-1kdr 22 +E°“‘Td1-—2—L (41)
Lo 2l a1y
p p2

Equations 38 and 4l determine p and AT when the second yielding starts
outside. The first two terms of Eq. 38 are positive; the third becomes
definitely nonnegative if %-5 1; hence if the solutions (p,AT(<=)) of
Eqs. 38 and Ul exist, p must be such that p < 4.

If the second yielding never occurs and p keeps increasing with
AT, then finite oT cannot satisfy Eq. 38 as~% + 1, Therefore, in such
a case the ring can become completely plastic only if AT approaches
infinity without violating the assumptions regarding k.

Before AT reaches its limit which may have been established due
to the limitations assumed for k, such as k(r) remains always pceitive,
it is possible that the second yielding outside may never be caused to

occur. For example, for % = 10, linear k(T) (Eq. 23, kq held constant)

and %% = 3 the second yielding is predicted by Eqs. 38 and 4l when Q%!

d
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has exceeded its limit 1 and become 1.169 requiring k(r) to be negative

in1<f<i.38

6. OQuter Plastic Region n<r<d (4T > 0).

A finite plastic region may form outside after the second yielding
starts outside due to k, = %-Ioe - °r| at r = d. The expressions for
stresses in the inner plastic region remain the same (Eqs. 33 and 34);
the stresses in the outer plastic region and in the central elastic
region are now to be determined.

In the outer plastic region n < r < d,the Eq. 1, subject to

condition that gL 0 < o, the yield condition

0

-0 = 2k (k2)

°6 T

and the boundary condition: Op = 0 at r = 4, determine

d
k
g, = =2 J ;-dr (43)
r
and
d
k
0 = 2K -2j;dr (Lb)
r

Since k > 0 (Inequalities 17), for r < 4,

6. <0 (b5)

r—

doe

dk ,  k
Og = 2kd at r = 4 and e & 2[dr + rJ > 0; hence, monotonically in-

creasing o, will be nositive in n < r < d, if the inequality

8
%n (0e at r =n) >0, i.e,
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k - dr > 0 (46)

3
> [
=

is always satisfied. This condition will be shown »lways satisfied at
the end of this section. Thus the yield condition Eq. L2 remains always
valid. It may be checked that any other form of the yield condition
will not give an acceptable stress solution.

The condition of continuity of or across the interfaces p and n
allow to fird the stresses in the elastic region p < r < n easily from

the general Eqs. 15 and 16 used with Eqs. 1k, 34 and 43,

2 2 2
LI O e
or [ 5 ra)E—-[]e]
r [o] ‘12 r ﬂ2
o] - a1 n —_— -1
p? p?
(o2 2)
ﬂ; -1 4an--
+§ﬂl—31n£r2 - 1‘2' (lﬂ)
2tay ﬂ; -1 in ﬂ;
p [¢)
L J
2 2 2
2 2 2
om o] e S—- o[ Fe) =
2
¢ L 1l n IF-- 1l
2 p?
2 2 !
-"-2—+1 lnn—2-2
r EaAT an r2 ' Ir . (he)
2 c a . 1 Ln ﬂ;
2
P p
! J
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Equations 47 and 4B will give complete stress distribution upon the
determination of p and n. p and n can be determined by using the

following two relations which are conditions of continuity of c;e across

p and n.
2 2 1 A
o w1 a2 o=
Y (AL PP A B
J = 2
e .2 n L T LA L = R TN
p? p? p2 02
(49)
d
2k-2J£dr=
n r
n
Z N
0 d 2. 2'
2
[g[kdr] 22 'lzjferpz _EuATdmnz 21 ) 12
c i, n LI T -l 1 ST R
p2 p? 02 p2
I J
(50)

The Eqs. 49 and 50 may be reduced to two simpler equations by multiply-

2
ing Eq. 50 by :’; and then subtracting Eq. 49 from it and obtaining
P

o]
£(p,n,8T) = |k -ijkdszT—d- oo —E-E”—d-k n2=0 (51)
P pc ‘*lnc hzn; n

and by subtracting Eq. 49 from Eq. -J and obtaining



2l

) d
glp,n,a1)z k_ 4+ lj kar + 285 pnp2  ESAL g0z 4y 2I Kar=o
R P ben = ban = i 5
. d (52)
It is interesting to note that Eqs. 51 and 52 are nothing but the
following two equations:
2 2
~0g, * 0. * (oe -o.) L Egégg . (53)
p p n n 92 28n s pz
EaAT n%
-0, -0_ + o0, +0 =——=— in (54)
8p rp én rn 2en %. 5

The stresses °r and o, with subscript p or n are to be evaluated at

0
r=por  =n respectively.

For the elastic region p < r < n, the stresses at the boundaries
r=pand r =n (Inequalities 35, 4S and 46) satisfy the third set of
conditions (for AT > O0) discussed in the section on the behavior of

stresses in an elastic region. Ops o, and, hence, t should therefore

]
be distributed as shown in Figure 6. It is evident that the yield
condition will not be violated in the elastic region, third plastic
region will not develop and the yielding will continue further at the
interfaces.

Equations 51 and 52 determine p and n , but they are general and
implicit, and cannot be solved in closed form; they require numerical
solution which could be handled easily by the use of a digital computer.

Therefore, it is important to establish the existence of the solution

and the procedure to obtain it.
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The Eqs. 51 and 52 can be reduced to Eqs. 38 and Ll when n = d.
It was shown in the previous section that the plastic region may develop
outside only if the second yielding starts at r = d for p(< d) and AT
which satisfy the Eqs. 38 and Ll. Therefore, Eqs. 51 and 52 have a
unique solution p,n(= d) for AT which starts yielding outside, and will
dn

have unique solution as AT increases if %%T and BT are continuous --

piecewise if necessary, and

do
mlo (55)
dar,
d—‘ﬁ;f_o (56)

These conditions are also required for the validity of the adopted
analysis which assumes that the plastic regions do not unload as the
loading progresses. Figure T provides an illustration that it is possible
to have cases which do not always satisfy Inequalities 55 and 56. It
is evident in Figure 7, which is drawr. for linear k(T) (Eq. 23, kd held
constant) from Eqs. 51 and 52, that (for % = 5 and %% = 100) n starts
to increase at A. Analysis must be modified from the point A to include
the unloading of outer plastic region.

It is assumed that the Inequalities 55 and 56 are always satisfied.
The solution of Eqs. 51 and 52 may be obtained from the intersection of
the curves f and g defined by the functions f and g respectively in the
ne plane, as shown in Figure 8. The slopes of the curves f and g are

given respectively by
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EadT e _QEED.
r - b oan & i) LN
p .2 < (57)
= 8 0 1 (P EaaT . p %%
3p 5|k, =S| kar|+ +
SR L3 2%
c c
Eafl 0¥y
§ - kT4 b, &N 20
p°, 30 .2 ¢ (58)
an kT4 n o 3k >
30 %[k -ij kdr]+§ﬂ'§-+2—-‘%
PP 2 dp

Loin i
¢

and at the intersection point the following relations are satisfied.

of _ 298
T N (59a)
L _ 2 3g
% % 35 (59b)
' | n2 208 (59¢)
an 2 on

©

The Eqs. 59 result really on account of the nature of Eqs. 51 and 52
as expressed in Eqs. 53 and 5L, and Eq. 1. The curves f and g may

intersect each other at many points, if between two consacutive inter-

£ 8
section points [%% - %%) becomes zero. This is not possible unless,

in view of Eq. 59- and the positiveness of denominators of Eqs. 57 or

58,

2 _x A DL (60)
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Therefore, if the left side of Eq. 60 is positive (negative) for
p < n<d, the curves f and g increase (decrease) monotonically and
intersect at only one point giving a unique solution. If Eq. 60 is
satisfied for p < n <d, multiple solutions may arise; an appropriate
solution must then be chosen from the consideration that p and n

should be continuous for the neighboring values of AT, as shown in

Figure 8.
: and sn_ may be cbtained as follows by solving two equations:
daT daT
daf dg .
WPT - 0 and aAT = 0, and using £qs. 59.
1 I_[QJ[JQJ.I_ﬂ__aﬂ (61)
- 9p | (dAT 94T  aAT
p?2 n? n?
S P W | (- /0 R W " SR W (62)
2 2| [4aT af [94aT 2 04T
P n - 3—n (o]

In Eq. 61, -g—:;- (which is twice the denominator in Eq. 57) is always
positive. In order that the Inequalities 55 and 56 be satisfied, the
right sides of Eqs. 61 and 62 must be positive; which (unlike Eq. LO)
are not always guaranteed by either of the cases in which 'I‘c or Td is
held constant, or when n = d.

To show that inn <r <d 0y > 0, i.e., Inequality U6

always holds, Eqs. 51 and 52 may be used to obtain the following

equation by eliminating between them.

hll.n-‘l
c
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rd
K
kn - - dr} ’ -
N 2 2 2 2
1 in = | 0 ) tn = | P~-1 LU
=3 2 | 1 52 2 LR
= ﬂkn — . — k =5 | kar{il- + >
i s 2 2
HT - lf l c - an - A-_
\ p? p? o2 02 |
4
(63)

Clearly, as required, the left side is positive because the right side

is positive on account of the Inequalities 17, 35 and 1 < £-< o,

T. Total Yielding ¢ < r < d (4T > 0).

If the Inequalities 55 and 50 are satisfied, the interfaces p and
n move toward each other as AT increases. The ring then tends to be-

come totally plastic as 3 - 1; and Eq. 53 (or Eq. 54) leads to the

¢ 1lim o, -0
result that Eu_ATd. L e _L;___O_o_ = =, where AT® is 4T required for
2 4n T P ]
e lim
complete yielding, because the continuity of g, requires 2_*1 (orp - arn
= 0 and the Inequalities 35 and L6 require O < oen - oep < w, It is

assumed that the assumptions made for k are not violated. Hence, Jjust
as it is the case with other thermal problems, AT is required to be
infinite in the present problem for complete yielding of the ring.
However, the assumptions made for the function k (In. .alities 17 or
18) will impose limitation on AT in & problem which is being solved

from actual physical data.



8. Displacement and Strains (AT > 0).

It is assumed that the plastic regions develop and expand mono-
tonically with increasing loading (AT) as discussed in the previous
sections. Plastic deformation is assumed incompressible. The yield
condition t = k(T) is nonisothermal; but, since it is very simple in
form, the flow rules which have been derived from the consideration

(13,14)

of a general nonisothermal yield condition give the same

relations among the ratios of the plastic strain increments as those

[15], as shown in

customarily used for the isothermal yield condition
Figure 9.

Inner Plastic Region (¢ < r < p). The flow rules require,

corresponding to line EF (0, = -2k) in Tresca hexagon (Figure 9),

Therefore, €. -e;; or by Eqs. 2 and 10

du
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e; st 0 =11 (64)

E=—=0_ - vo_, + EaT (65)

dr r U]
Integration of Eq. 65 gives the displacement u with an arbitrary
constant of integration \.a.p --the displacement at r = p,

P e (¢

6

E{u - up) = - J ordr + v J o.dr - Ea j T dr (66)
r r r

up can be determined by utilizing the fact that the strains at r = p

must be elastic.
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' -
Eup = Epe, = Epcep = p(oap VoL, + Ean) (67)

6p

o. and o, in Eq. 66 and their values at r = p in Eq. 67 are given by
Eqs. 33 and 34; and T in Eq. 66 and its value at r = p in Eq. 67 are
given by Eq. 6 (Tc const&at) or by Eq. 7 ('I‘d constant).

Outer Plastic Region (n < r < d). The flow rules require, corres-

ponding to line AB (oe =g = 2k) in Tresca hexagon (Figure 9),

e; : cg : é; 1 =1:1:0 (68)

Therefore, e, +* €5 = e; + eé or by Eqs. 2, 3, 10 and 11,

E[-g%i- %] = (l-\a)(a9 + or) + 2EaT (69)

Integration of Eq. 69 gives the displacement u with an arbitrary constant
of integration u, - the displacement at r = n.

r r
E(ru - nun) = (1-v) J (ce + or)dr + 2Ea I T dr (70)

n n
u, cen be determined by utilizing the fact that the strains at r = n
must be elastic,

= Ene,' = n(o, - vo_. + EaTn) (71)

e el khe g en on

o, and % in Eq. 70 and their values at r = n in Eq. 71 are given by

Eqs. 43 and 44; and T in Eq. 70 and its value at r = n in Eq. Tl are

given by Eq. 6 (Tc constant) or by Eq. T (Td constant).
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Central Elastic Region (o < r < n). €, =€) or by Eqs. 3 and 11

the displacement u is given by

Eu = r(oe - vo_ + EaT) (12)

Equations 4T and L8 give the stresses o, and O and Eq. 6 or 7 gives T
to be used in Eq. 72. When the region p < r < d is elastic, Eq. T2

has stresses o and 0, given by Eqs. 36 and 37.

]
It may be observed that the displacement field in the plastic
regions is obtainable from the elastic strains of those regions (Eqs. 65

and 69), the interface displacements depend upon the pure elastic
deformation of the central elastic region, and the elastic strains in
the plastic regions cannot be excessive due to the assumption of perfect
plasticity which requires the stresses to be bounded. Therefore, the
strains in the ring will be of the order of magnitude of elastic strains
and no danger of large deformations or thickening of the ring arises.
Thus & priori assumption of infinitesimel strains in the analysis
carried out is Justified.

Figures 10 and 1l show the displacement and strains at r = ¢ and

r = d respectively versus AT in the case of linear k(T) (Eq. 23). The

"

conditions: Eg <0inc <r<p and Ee

>0 inn < r'<d are required
by Eqs. 64 and 68, but are not apparently seen satisfied bty Eqs. 65

and 69 respectively from which displacements and strains are completely

"

]

and Eg » 0 at r = d. These inequalities have also been confirmed for

various points in the plastic regions by the digital computer results.,

obtained. Figures 10 and 11 confirm respectively that e <Oatr=c



9. Solution when k Linear Function of T (AT > OL'I"l = Constant).

It is assumed that T a* and hence k a’ is held constant. Equation
23 in the form of
ta 3
L. B Te (73)
d d (]
is used vhere
gaT
0« Tk 1 (TW)

in order to satisfy the condition k > O.

Plastic Region Inside. Stresses in inner plastic region c < r < p

are, by Eqs. 33 and 34 with Eq. T3,

d

i) 247 Pr (75)
2k k d
d d 2An y

T 1 c d r
2_:_._14-%4»%“—2‘:(1-;)(14-“;)-!:1% (16)
¢

Stresses in the elastic region p < r < d corresponding to Eqs. 36 and
37 may be obtained easily by using Eqs. 75 and T6. Relation between p

and AT, corresponding to Eq. 38, is

v Ebnde
T

O U BN R

(™
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Using this equation, it is possible to obtain the stiresses in the elastic

region p <r < d in terms of p exclusively.

p c [ fﬁ]
g e 814 -1+
21{(1 20 b

2 2 2 2 2
]E‘g 1- &= g r_]+ T I S 2[1- P—-J..[1+ L] [1- 3) [1+ tn 9]
e 2 ] r2 2 c2 ¢ rz r2 2 ¢
- —[1+ e_ -1 k
2p 2 2 ] 2 2 2
d % [l - ol -2n d_].'. n 2 -4n g—[l_ L]_[l-'- L] [1— E'] [l+ n 'd']
d2 p2 cz . d2 dz P .

(78)

o 2
il
a P r?

2 2 2 2y 42
E-rall- £ +an z'—]-9.1'1 E_ +in i[1-'- L]+l.l.- p_]
‘:[-‘_Lz]l_lﬁ Mk o2 o ol 2 2
- =l £
20 2 2 2 2 2 2
= a*’ _JEaf, pZ _,n d_]q.gn 85 _gn 85 5] _[14 S
g a2 02 e2 ¢

e 3
|

S
o} c

(79)

The value of p, for which the yielding starts outside at r = d, may be

i.e o—eg
’ . L[]
d 2kd

2 2 2 2 2
B [3-3J[1-L] + [—"‘-L+ 1] m L] - RSje e, 1]
P d2 de 92 c29d2

2 2 2
+gn2[222_+1-3L]+[1-3][1-&2:12][14'3&']'0 (80)
c L P42 a2 P = a2

obtained from Eqs. 79 and 73 by o 2k =1, or

=
éd
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Equation 80 is corresponding to an equation obtained by eliminating AT
between Eqo. 41 and 38. Substitution of p determined from Eq. €0 into
Eq. T7 gives the value of AT at which the yielding starts outside,

The displacement u in ¢ < r <p,as given by Eqs. 66 and 67 with

Eqs. T, 73, 75 and 76 and, assuming Td = 0°F and hence kd =k,, is
Eu,_r 24 o[z
0 /
*ﬁA—g-_l ln2£+ln2_2£_£ +zn£_£ln£
k d cle r c c c
0 &n — )
( )
N r 1+zn%]{1-§+§zn§
0 tn=|* ’
Ea AT 1 _|r d p.r r r]
+ = =n<-=%===In=
28 ko n %_Lc c ¢ ¢ ¢ c (81)

Plastic Region Outside. Plastic region will form outside if Eq.

80 has a solution and which when substituted in Eq. 77 does not require
AT to be such as to violate the assumptions regarding k. Stresses in

the outer plastic region n < r < d are given by Eqs. 43 and Lk with

Eq. T3.
o] dz
d d 24n —
c
. d . 8AT 1 ( a)’ d
%31-9&;'&'8?——(1 [ln;-J -2ln; (83)
d d2£n€

Stresses in the elastic region p < r< n, corresponding to Eqs. 4T ar?

48 may be obtained easily by using Eqs. 75, 76, 82 and 83.



32

The functions f(p,n,AT) and g(p,n,sT), corresponding to Egqs. 51

and 52 which determine p and n for a AT, are:

f(p'n'AT)-a.p-B-A_T. 1 _22n2_£+.L2+E°£.J
kg an 2 L © ¢ C 2 B o2
L
n2 BAT ¢2 d . Ea
SR d[“"“*m‘° (6%)
c d R.n-;

2
e_AT._l__[smLs_mg-“%gmL]
P P 8 2

2
-ezn%+1+w—l— [-zn%+ (n &

Ea ﬁ
= - T‘? in 2] =0 (85)

¢

The displacement u inn < r < d, as given by Eqs. 70 and 71 with

Eqs. T, 73, 82 and 83 and assuming Td = 0°F and hence kd = ko, is

2
Ef--‘i-zn—-znivr“—wvzng
or c r2
2 2
ur [, 97,0y,
0 2tn r2 N

1'LO 2en 4 &
[
Ea BAT _ 1 d n2
‘3 K [2 tnT+1- > (86)
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Program for a digital computer IBM 360/50 (using the PCP version of
0S/360) was made by using the equations of this section to check the
analysis numerically. For % = 5, by taxing the values of %% to be 3 and
100, the positions of the interfaces, stresses, strains and displace-
ments were obtained for meny values of E%Z-between O and 1. Also for
%'- 10 and %% = 3 the computer results w:re obtained; but as mentioned
at the end of the section on inner plastic region, second yielding did

not occur for Q%E.i 1. Values of displacements and strains were

d
calculated assuming Td = Q°F,

10. General Discussion of Case AT < O,

As shown before (Figure L), under general given conditions, the
uncertainty of place(s) of the development of plastic region(s) arise
right from the initial yielding of the ring; and hence the analysis ih
general cannot be made in a definite order or led to completion. Only
a specific problem can be solved completely and in definite order
following the general procedure for the case of AT > 0 unless the
plastic regions unload as the loading progresses requiring a modified
analysis. Analysis must be made in small steps for decreasing AT
carefully checking the occurrence of a new independent yielding and
retreat of the interfaces.

The yield conditions of the inner and outer plastic regions could
only be as represented by lines AB and EF (Figure 9) respectively for
AT > 0; and in the same way they would only be as represented by lines
BC and DE respectively for AT < O. These yield conditions together
with the known boundary conditions: o__ = o_. = O completely determine

re rd

the stresses in those plastic regions.
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For AT < 0, there are¢ pussibilities that one or more plastic regions,

with an elastic region separating each other, may appear besides the
inner and outer ones, for example as shown in Figure 4. Such a plastic
region may appear with one of the three yield conditions represented by
lines BC, CD and DE (Figure 9) Lines AB, AF and EF requiring 9. to be
negative seem highly unlikely assuming, as the plastic regions develop
with increasing loading (-4T), . ey not decrease after it has been
positive throughout the initially entirely elastic ring and has been
increasing with -AT up to the first yielding (Eq. 15 and Figure 2). The
stresses are statically determinate in & plastic region appearing with

a yield condition o. = 2k (line CD), but they are not in the one appear-
=2k (line DE) because of

ing with either o, = 2k (line BC) or o, -

) %
the absence of a known boundary condition to determine the constant of
integration of Eq. 1 used with the yield condition. In such case,
displacement considerations must be made on account of the two known
boundary conditions for displacement u: %-= €g must be elastic at the
two interfaces, and one unknown constant of integration involved in
obtaining u just like that in Eq. 67 or 70. Thus the stresses in such
plastic regions would be dependent of the positions of the interfaces.
Having determined the stresses -- dependent or independent of the
positions of relevant interfaces -- in the plastic regions, the pro-
cedure to determine the positions of the interfaces, stresses in the

elastic regions and the displacements throughout the ring is the same as

that applied for AT > 0. The plastic stresses at the interfaces may
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not satisfy any of the four conditions given at the end of the section
on the behavior of stresses in an elastic region, but the behavior of
the elastic stresses can be inferred by some reasoning and the question

of violation of yield conditions in the elastic regions can be settled.

1l. Conclusions.

The problem is comprised of two cases: (a) AT > 0 and (b) AT < O,
depending upon whether the inside temperature is higher or lower than
the outside temperutu:c. Conclusions for both the cases are different
and, hence, they are presented separately.

(a) AT > 0: The initial yielding always occurs inside, and a
small finite plastic region with an elastic-plastic interface o
develops inside due to a small increment in AT. As 4T keeps increas-

ing, p moves definitely outward if T, is held constant, whereas it may

d
not if 'I‘c is held constant. If p keeps increasing, before it reaches
the outer boundary d, a second (outer) plastic region with an elastic-
plastic interface n is likely to develop from d. No third, new plastic
region can develop as the inner and outer plastic regions approach

each other; and AT is required to approach infinity to let 2-* 1 for
complete yielding. If the outer plastic region does not develop at

all and p keeps increasing, then also the ring tends to become complete-
ly plastic if AT approaches infinity. However, the assumptions made

for function k (Inequalities 17 or 18) will mostly impose limit on AT

in a problem which is being solved from actual physical data and com-

plete yielding will not be realized. The displacement solution provides
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a Justification to the a pricri assumpticn of infinitesimal strains at
high temperatures or at high difference in the boundary temperatures.

It is shown that in spite of increasing locading (AT), the plastic
regions (inner only when alone, cr both or either of inner and outer)
mey suffer unloading, i.e. the elastic-plastic interfaces may retreat.
This is perhaps a characteristiec unique of the temperature problems in
which the yield stress decreases =1 effect of softening) or increases
(an effect of hardening) as temperature increases or decreases re-
spectively, or in which the softening or hardening effects are produced
by the thermal dependence of physical parameters. If a part of an
elastic region had been in plastic state before, the analysis for that
part must include the residual strains due to the previous plastic
deformation; and thus, as a plastic regicn starts to unload, the stress
and displacement analyses are required to be carried out together.

(b) AT < 0: The elastic-plastic behavior of rings in this case
is in general different fron that discussed above. Step by step
analysis of the problem under general given conditions cannot be made;
each specific problem must be treated in its own right and conclusions
be drawn following the general procedure adopted for the case of AT > 0.
More than two plastic regicns are likely to develop. Stresses
would not be statically determinate in an independent plastic region,
except inner or outer one, occurring with the yield condition either

= 2k or B, = G @ 2k. It is possible that the interfaces may

% 8

retreat despite increasing loading.
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The present problem when extended by allowing three more
considerations may yield some more interesting results. Unloading
(if occurring) of plastic regions with increasing loading, unloading
of the ring leading to residual stresses and the transient tempera-
ture distributions while loading and unloading the ring may be

considered.
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, BT =AT
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Figure 9 - Tresca Yield Condition and
Strain Rate Vectors.
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